Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 426, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589567

RESUMO

Wilms tumor (WT) is the most common renal malignancy of childhood. Despite improvements in the overall survival, relapse occurs in ~15% of patients with favorable histology WT (FHWT). Half of these patients will succumb to their disease. Identifying novel targeted therapies remains challenging in part due to the lack of faithful preclinical in vitro models. Here we establish twelve patient-derived WT cell lines and demonstrate that these models faithfully recapitulate WT biology using genomic and transcriptomic techniques. We then perform loss-of-function screens to identify the nuclear export gene, XPO1, as a vulnerability. We find that the FDA approved XPO1 inhibitor, KPT-330, suppresses TRIP13 expression, which is required for survival. We further identify synergy between KPT-330 and doxorubicin, a chemotherapy used in high-risk FHWT. Taken together, we identify XPO1 inhibition with KPT-330 as a potential therapeutic option to treat FHWTs and in combination with doxorubicin, leads to durable remissions in vivo.


Assuntos
Hidrazinas , Neoplasias Renais , Triazóis , Tumor de Wilms , Humanos , 60611 , Transporte Ativo do Núcleo Celular , Carioferinas/genética , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Linhagem Celular Tumoral , Apoptose , Recidiva Local de Neoplasia , Doxorrubicina/farmacologia , Tumor de Wilms/tratamento farmacológico , Tumor de Wilms/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ciclo Celular/metabolismo
2.
Clin Cancer Res ; 29(24): 5128-5139, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37773632

RESUMO

PURPOSE: Leiomyosarcoma (LMS) is an aggressive sarcoma for which standard chemotherapies achieve response rates under 30%. There are no effective targeted therapies against LMS. Most LMS are characterized by chromosomal instability (CIN), resulting in part from TP53 and RB1 co-inactivation and DNA damage repair defects. We sought to identify therapeutic targets that could exacerbate intrinsic CIN and DNA damage in LMS, inducing lethal genotoxicity. EXPERIMENTAL DESIGN: We performed clinical targeted sequencing in 287 LMS and genome-wide loss-of-function screens in 3 patient-derived LMS cell lines, to identify LMS-specific dependencies. We validated candidate targets by biochemical and cell-response assays in vitro and in seven mouse models. RESULTS: Clinical targeted sequencing revealed a high burden of somatic copy-number alterations (median fraction of the genome altered =0.62) and demonstrated homologous recombination deficiency signatures in 35% of LMS. Genome-wide short hairpin RNA screens demonstrated PRKDC (DNA-PKcs) and RPA2 essentiality, consistent with compensatory nonhomologous end joining (NHEJ) hyper-dependence. DNA-PK inhibitor combinations with unconventionally low-dose doxorubicin had synergistic activity in LMS in vitro models. Combination therapy with peposertib and low-dose doxorubicin (standard or liposomal formulations) inhibited growth of 5 of 7 LMS mouse models without toxicity. CONCLUSIONS: Combinations of DNA-PK inhibitors with unconventionally low, sensitizing, doxorubicin dosing showed synergistic effects in LMS in vitro and in vivo models, without discernable toxicity. These findings underscore the relevance of DNA damage repair alterations in LMS pathogenesis and identify dependence on NHEJ as a clinically actionable vulnerability in LMS.


Assuntos
Leiomiossarcoma , Animais , Camundongos , Humanos , Leiomiossarcoma/tratamento farmacológico , Leiomiossarcoma/genética , Leiomiossarcoma/patologia , Reparo do DNA/genética , Dano ao DNA , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , DNA
3.
Commun Biol ; 5(1): 1174, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329185

RESUMO

Aberrant DNA methylation patterns are a prominent feature of cancer. Methylation of DNA is mediated by the DNA methyltransferase (DNMT) protein family, which regulates de novo (DNMT3A and DNMT3B) and maintenance (DNMT1) methylation. Mutations in DNMT3A are observed in approximately 22% of acute myeloid leukemia (AML). We hypothesized that DNMT1 or DNMT3B could function as a synthetic lethal therapeutic strategy for DNMT3A-mutant AML. CRISPR-Cas9 tiling screens were performed to identify functional domains within DNMT1/DNMT3B that exhibited greater dependencies in DNMT3A mutant versus wild-type cell lines. Although increased sensitivity to DNMT1 mutation was observed in some DNMT3A mutant cellular models tested, the subtlety of these results prevents us from basing any conclusions on a synthetic lethal relationship between DNMT1 and DNMT3A. Our data suggests that a therapeutic window for DNMT1 methyltransferase inhibition in DNMT3A-driven AML may exist, but validation in more biologically relevant models is required.


Assuntos
Leucemia Mieloide Aguda , Metiltransferases , Humanos , Metiltransferases/genética , DNA Metiltransferase 3A , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Leucemia Mieloide Aguda/genética , Mutação , DNA
4.
Blood Adv ; 6(6): 1780-1796, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35016204

RESUMO

How genetic haploinsufficiency contributes to the clonal dominance of hematopoietic stem cells (HSCs) in del(5q) myelodysplastic syndrome (MDS) remains unresolved. Using a genetic barcoding strategy, we performed a systematic comparison on genes implicated in the pathogenesis of del(5q) MDS in direct competition with each other and wild-type (WT) cells with single-clone resolution. Csnk1a1 haploinsufficient HSCs expanded (oligo)clonally and outcompeted all other tested genes and combinations. Csnk1a1-/+ multipotent progenitors showed a proproliferative gene signature and HSCs showed a downregulation of inflammatory signaling/immune response. In validation experiments, Csnk1a1-/+ HSCs outperformed their WT counterparts under a chronic inflammation stimulus, also known to be caused by neighboring genes on chromosome 5. We therefore propose a crucial role for Csnk1a1 haploinsufficiency in the selective advantage of 5q-HSCs, implemented by creation of a unique competitive advantage through increased HSC self-renewal and proliferation capacity, as well as increased fitness under inflammatory stress.


Assuntos
Deleção Cromossômica , Síndromes Mielodisplásicas , Haploinsuficiência , Células-Tronco Hematopoéticas/patologia , Humanos , Síndromes Mielodisplásicas/patologia
5.
Nat Commun ; 11(1): 2707, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483149

RESUMO

Chronic HBV infection is a major cause of liver disease and cancer worldwide. Approaches for cure are lacking, and the knowledge of virus-host interactions is still limited. Here, we perform a genome-wide gain-of-function screen using a poorly permissive hepatoma cell line to uncover host factors enhancing HBV infection. Validation studies in primary human hepatocytes identified CDKN2C as an important host factor for HBV replication. CDKN2C is overexpressed in highly permissive cells and HBV-infected patients. Mechanistic studies show a role for CDKN2C in inducing cell cycle G1 arrest through inhibition of CDK4/6 associated with the upregulation of HBV transcription enhancers. A correlation between CDKN2C expression and disease progression in HBV-infected patients suggests a role in HBV-induced liver disease. Taken together, we identify a previously undiscovered clinically relevant HBV host factor, allowing the development of improved infectious model systems for drug discovery and the study of the HBV life cycle.


Assuntos
Inibidor de Quinase Dependente de Ciclina p18/genética , Mutação com Ganho de Função , Testes Genéticos/métodos , Estudo de Associação Genômica Ampla/métodos , Hepatite B/genética , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p18/metabolismo , Perfilação da Expressão Gênica/métodos , Células HEK293 , Células Hep G2 , Hepatite B/metabolismo , Hepatite B/virologia , Vírus da Hepatite B/fisiologia , Interações entre Hospedeiro e Microrganismos , Humanos , Estimativa de Kaplan-Meier , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Interferência de RNA , Replicação Viral/fisiologia
6.
Nat Commun ; 10(1): 2400, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160565

RESUMO

BET-bromodomain inhibition (BETi) has shown pre-clinical promise for MYC-amplified medulloblastoma. However, the mechanisms for its action, and ultimately for resistance, have not been fully defined. Here, using a combination of expression profiling, genome-scale CRISPR/Cas9-mediated loss of function and ORF/cDNA driven rescue screens, and cell-based models of spontaneous resistance, we identify bHLH/homeobox transcription factors and cell-cycle regulators as key genes mediating BETi's response and resistance. Cells that acquire drug tolerance exhibit a more neuronally differentiated cell-state and expression of lineage-specific bHLH/homeobox transcription factors. However, they do not terminally differentiate, maintain expression of CCND2, and continue to cycle through S-phase. Moreover, CDK4/CDK6 inhibition delays acquisition of resistance. Therefore, our data provide insights about the mechanisms underlying BETi effects and the appearance of resistance and support the therapeutic use of combined cell-cycle inhibitors with BETi in MYC-amplified medulloblastoma.


Assuntos
Azepinas/farmacologia , Ciclo Celular/efeitos dos fármacos , Neoplasias Cerebelares/tratamento farmacológico , Meduloblastoma/tratamento farmacológico , Neurogênese/efeitos dos fármacos , Proteínas/antagonistas & inibidores , Triazóis/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula , Neoplasias Cerebelares/genética , Ciclina D2/efeitos dos fármacos , Ciclina D2/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Perfilação da Expressão Gênica , Humanos , Meduloblastoma/genética , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Fase S/efeitos dos fármacos
7.
Elife ; 82019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31070582

RESUMO

Genome-wide association studies (GWAS) have identified thousands of variants associated with human diseases and traits. However, the majority of GWAS-implicated variants are in non-coding regions of the genome and require in depth follow-up to identify target genes and decipher biological mechanisms. Here, rather than focusing on causal variants, we have undertaken a pooled loss-of-function screen in primary hematopoietic cells to interrogate 389 candidate genes contained in 75 loci associated with red blood cell traits. Using this approach, we identify 77 genes at 38 GWAS loci, with most loci harboring 1-2 candidate genes. Importantly, the hit set was strongly enriched for genes validated through orthogonal genetic approaches. Genes identified by this approach are enriched in specific and relevant biological pathways, allowing regulators of human erythropoiesis and modifiers of blood diseases to be defined. More generally, this functional screen provides a paradigm for gene-centric follow up of GWAS for a variety of human diseases and traits.


Assuntos
Doenças Genéticas Inatas , Predisposição Genética para Doença , Hematopoese/genética , Locos de Características Quantitativas/genética , Eritrócitos/metabolismo , Eritrócitos/patologia , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único/genética
8.
Nat Med ; 25(2): 292-300, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30664779

RESUMO

Chordoma is a primary bone cancer with no approved therapy1. The identification of therapeutic targets in this disease has been challenging due to the infrequent occurrence of clinically actionable somatic mutations in chordoma tumors2,3. Here we describe the discovery of therapeutically targetable chordoma dependencies via genome-scale CRISPR-Cas9 screening and focused small-molecule sensitivity profiling. These systematic approaches reveal that the developmental transcription factor T (brachyury; TBXT) is the top selectively essential gene in chordoma, and that transcriptional cyclin-dependent kinase (CDK) inhibitors targeting CDK7/12/13 and CDK9 potently suppress chordoma cell proliferation. In other cancer types, transcriptional CDK inhibitors have been observed to downregulate highly expressed, enhancer-associated oncogenic transcription factors4,5. In chordoma, we find that T is associated with a 1.5-Mb region containing 'super-enhancers' and is the most highly expressed super-enhancer-associated transcription factor. Notably, transcriptional CDK inhibition leads to preferential and concentration-dependent downregulation of cellular brachyury protein levels in all models tested. In vivo, CDK7/12/13-inhibitor treatment substantially reduces tumor growth. Together, these data demonstrate small-molecule targeting of brachyury transcription factor addiction in chordoma, identify a mechanism of T gene regulation that underlies this therapeutic strategy, and provide a blueprint for applying systematic genetic and chemical screening approaches to discover vulnerabilities in genomically quiet cancers.


Assuntos
Cordoma/metabolismo , Proteínas Fetais/metabolismo , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Proliferação de Células/efeitos dos fármacos , Cordoma/genética , Cordoma/patologia , Quinases Ciclina-Dependentes/metabolismo , Regulação para Baixo/efeitos dos fármacos , Genes Essenciais , Humanos , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia
9.
Cancer Discov ; 9(2): 230-247, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30373918

RESUMO

Small cell lung cancer (SCLC) accounts for 15% of lung cancers and is almost always linked to inactivating RB1 and TP53 mutations. SCLC frequently responds, albeit briefly, to chemotherapy. The canonical function of the RB1 gene product RB1 is to repress the E2F transcription factor family. RB1 also plays both E2F-dependent and E2F-independent mitotic roles. We performed a synthetic lethal CRISPR/Cas9 screen in an RB1 -/- SCLC cell line that conditionally expresses RB1 to identify dependencies that are caused by RB1 loss and discovered that RB1 -/- SCLC cell lines are hyperdependent on multiple proteins linked to chromosomal segregation, including Aurora B kinase. Moreover, we show that an Aurora B kinase inhibitor is efficacious in multiple preclinical SCLC models at concentrations that are well tolerated in mice. These results suggest that RB1 loss is a predictive biomarker for sensitivity to Aurora B kinase inhibitors in SCLC and perhaps other RB1 -/- cancers. SIGNIFICANCE: SCLC is rarely associated with actionable protooncogene mutations. We did a CRISPR/Cas9-based screen that showed that RB1 -/- SCLC are hyperdependent on AURKB, likely because both genes control mitotic fidelity, and confirmed that Aurora B kinase inhibitors are efficacious against RB1 -/- SCLC tumors in mice at nontoxic doses.See related commentary by Dick and Li, p. 169.This article is highlighted in the In This Issue feature, p. 151.


Assuntos
Aurora Quinase B/metabolismo , Proliferação de Células , Genes Supressores de Tumor , Neoplasias Pulmonares/patologia , Mutação , Proteínas de Ligação a Retinoblastoma/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Aurora Quinase B/genética , Sistemas CRISPR-Cas , Segregação de Cromossomos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Proteínas de Ligação a Retinoblastoma/antagonistas & inibidores , Proteínas de Ligação a Retinoblastoma/genética , Transdução de Sinais , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/metabolismo , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Blood ; 132(12): 1293-1303, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30042095

RESUMO

Lenalidomide mediates the ubiquitination and degradation of Ikaros family zinc finger protein 1 (IKZF1), IKZF3, and casein kinase 1α (CK1α) by facilitating their interaction with cereblon (CRBN), the substrate receptor for the CRL4CRBN E3 ubiquitin ligase. Through this mechanism, lenalidomide is a clinically effective treatment of multiple myeloma and myelodysplastic syndrome (MDS) with deletion of chromosome 5q [del(5q) MDS]. To identify the cellular machinery required for lenalidomide-induced CRL4CRBN activity, we performed a positive selection, genome-scale clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) screen in a lenalidomide-sensitive myeloma cell line. CRBN was the top-ranking gene, with all CRBN-targeting guide RNAs (gRNAs) ranking as the 6 highest-scoring gRNAs. A counterscreen using an IKZF3 degron reporter to assay lenalidomide-induced protein degradation highlighted regulators of cullin-RING ligase neddylation and 2 E2 ubiquitin-conjugating enzymes as necessary for efficient lenalidomide-induced protein degradation. We demonstrated that loss of UBE2M or members of the constitutive photomorphogenesis 9 (COP9) signalosome results in altered neddylation of cullin 4A and impairs lenalidomide-dependent CRL4CRBN activity. Additionally, we established that UBE2D3 and UBE2G1 play distinct roles in substrate ubiquitination by CRL4CRBN, with UBE2D3 acting to prime targets via monoubiquitination and UBE2G1 functioning to extend polyubiquitin chains with lysine 48 linkages. The validation of UBE2D3 and UBE2G1 highlights the functional capacity of CRISPR-Cas9 screening to identify E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase complex pairings. More broadly, these findings establish key proteins required for lenalidomide-dependent CRL4CRBN function in myeloma and inform potential mechanisms of drug resistance.


Assuntos
Antineoplásicos/farmacologia , Lenalidomida/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Ubiquitina-Proteína Ligases/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/efeitos dos fármacos
12.
J Clin Invest ; 128(1): 446-462, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29202477

RESUMO

Pharmacologically difficult targets, such as MYC transcription factors, represent a major challenge in cancer therapy. For the childhood cancer neuroblastoma, amplification of the oncogene MYCN is associated with high-risk disease and poor prognosis. Here, we deployed genome-scale CRISPR-Cas9 screening of MYCN-amplified neuroblastoma and found a preferential dependency on genes encoding the polycomb repressive complex 2 (PRC2) components EZH2, EED, and SUZ12. Genetic and pharmacological suppression of EZH2 inhibited neuroblastoma growth in vitro and in vivo. Moreover, compared with neuroblastomas without MYCN amplification, MYCN-amplified neuroblastomas expressed higher levels of EZH2. ChIP analysis showed that MYCN binds at the EZH2 promoter, thereby directly driving expression. Transcriptomic and epigenetic analysis, as well as genetic rescue experiments, revealed that EZH2 represses neuronal differentiation in neuroblastoma in a PRC2-dependent manner. Moreover, MYCN-amplified and high-risk primary tumors from patients with neuroblastoma exhibited strong repression of EZH2-regulated genes. Additionally, overexpression of IGFBP3, a direct EZH2 target, suppressed neuroblastoma growth in vitro and in vivo. We further observed strong synergy between histone deacetylase inhibitors and EZH2 inhibitors. Together, these observations demonstrate that MYCN upregulates EZH2, leading to inactivation of a tumor suppressor program in neuroblastoma, and support testing EZH2 inhibitors in patients with MYCN-amplified neuroblastoma.


Assuntos
Sistemas CRISPR-Cas , Diferenciação Celular , Proteína Potenciadora do Homólogo 2 de Zeste , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Regulação para Cima , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Proteína Proto-Oncogênica N-Myc/biossíntese , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/metabolismo , Neurônios/patologia
13.
Proc Natl Acad Sci U S A ; 114(51): E10981-E10990, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29203668

RESUMO

Ovarian cancer is the most lethal of all gynecological cancers, and there is an urgent unmet need to develop new therapies. Epithelial ovarian cancer (EOC) is characterized by an immune suppressive microenvironment, and response of ovarian cancers to immune therapies has thus far been disappointing. We now find, in a mouse model of EOC, that clinically relevant doses of DNA methyltransferase and histone deacetylase inhibitors (DNMTi and HDACi, respectively) reduce the immune suppressive microenvironment through type I IFN signaling and improve response to immune checkpoint therapy. These data indicate that the type I IFN response is required for effective in vivo antitumorigenic actions of the DNMTi 5-azacytidine (AZA). Through type I IFN signaling, AZA increases the numbers of CD45+ immune cells and the percentage of active CD8+ T and natural killer (NK) cells in the tumor microenvironment, while reducing tumor burden and extending survival. AZA also increases viral defense gene expression in both tumor and immune cells, and reduces the percentage of macrophages and myeloid-derived suppressor cells in the tumor microenvironment. The addition of an HDACi to AZA enhances the modulation of the immune microenvironment, specifically increasing T and NK cell activation and reducing macrophages over AZA treatment alone, while further increasing the survival of the mice. Finally, a triple combination of DNMTi/HDACi plus the immune checkpoint inhibitor α-PD-1 provides the best antitumor effect and longest overall survival, and may be an attractive candidate for future clinical trials in ovarian cancer.


Assuntos
Epigênese Genética/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Interferon Tipo I/metabolismo , Neoplasias Ovarianas/etiologia , Neoplasias Ovarianas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos Imunológicos , Azacitidina/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Inibidores de Histona Desacetilases/farmacologia , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Nat Genet ; 49(12): 1779-1784, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29083409

RESUMO

The CRISPR-Cas9 system has revolutionized gene editing both at single genes and in multiplexed loss-of-function screens, thus enabling precise genome-scale identification of genes essential for proliferation and survival of cancer cells. However, previous studies have reported that a gene-independent antiproliferative effect of Cas9-mediated DNA cleavage confounds such measurement of genetic dependency, thereby leading to false-positive results in copy number-amplified regions. We developed CERES, a computational method to estimate gene-dependency levels from CRISPR-Cas9 essentiality screens while accounting for the copy number-specific effect. In our efforts to define a cancer dependency map, we performed genome-scale CRISPR-Cas9 essentiality screens across 342 cancer cell lines and applied CERES to this data set. We found that CERES decreased false-positive results and estimated sgRNA activity for both this data set and previously published screens performed with different sgRNA libraries. We further demonstrate the utility of this collection of screens, after CERES correction, for identifying cancer-type-specific vulnerabilities.


Assuntos
Sistemas CRISPR-Cas , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Dosagem de Genes/genética , Predisposição Genética para Doença/genética , Algoritmos , Linhagem Celular Tumoral , Humanos , Modelos Genéticos , Neoplasias/diagnóstico , Neoplasias/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Cell Syst ; 5(5): 485-497.e3, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-28988802

RESUMO

We report the results of a DREAM challenge designed to predict relative genetic essentialities based on a novel dataset testing 98,000 shRNAs against 149 molecularly characterized cancer cell lines. We analyzed the results of over 3,000 submissions over a period of 4 months. We found that algorithms combining essentiality data across multiple genes demonstrated increased accuracy; gene expression was the most informative molecular data type; the identity of the gene being predicted was far more important than the modeling strategy; well-predicted genes and selected molecular features showed enrichment in functional categories; and frequently selected expression features correlated with survival in primary tumors. This study establishes benchmarks for gene essentiality prediction, presents a community resource for future comparison with this benchmark, and provides insights into factors influencing the ability to predict gene essentiality from functional genetic screens. This study also demonstrates the value of releasing pre-publication data publicly to engage the community in an open research collaboration.


Assuntos
Expressão Gênica/genética , Genes Essenciais/genética , Algoritmos , Linhagem Celular Tumoral , Genômica/métodos , Humanos , RNA Interferente Pequeno/genética
16.
Cell ; 170(3): 564-576.e16, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28753430

RESUMO

Most human epithelial tumors harbor numerous alterations, making it difficult to predict which genes are required for tumor survival. To systematically identify cancer dependencies, we analyzed 501 genome-scale loss-of-function screens performed in diverse human cancer cell lines. We developed DEMETER, an analytical framework that segregates on- from off-target effects of RNAi. 769 genes were differentially required in subsets of these cell lines at a threshold of six SDs from the mean. We found predictive models for 426 dependencies (55%) by nonlinear regression modeling considering 66,646 molecular features. Many dependencies fall into a limited number of classes, and unexpectedly, in 82% of models, the top biomarkers were expression based. We demonstrated the basis behind one such predictive model linking hypermethylation of the UBB ubiquitin gene to a dependency on UBC. Together, these observations provide a foundation for a cancer dependency map that facilitates the prioritization of therapeutic targets.


Assuntos
Neoplasias/genética , Neoplasias/patologia , Linhagem Celular Tumoral , Humanos , Interferência de RNA , Software , Ubiquitina/genética
17.
Sci Transl Med ; 9(398)2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701475

RESUMO

Inactivation of the von Hippel-Lindau tumor suppressor protein (pVHL) is the signature lesion in the most common form of kidney cancer, clear cell renal cell carcinoma (ccRCC). pVHL loss causes the transcriptional activation of hypoxia-inducible factor (HIF) target genes, including many genes that encode histone lysine demethylases. Moreover, chromatin regulators are frequently mutated in this disease. We found that ccRCC displays increased H3K27 acetylation and a shift toward mono- or unmethylated H3K27 caused by an HIF-dependent increase in H3K27 demethylase activity. Using a focused short hairpin RNA library, as well as CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) and a pharmacological inhibitor, we discovered that pVHL-defective ccRCC cells are hyperdependent on the H3K27 methyltransferase EZH1 for survival. Therefore, targeting EZH1 could be therapeutically useful in ccRCC.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Mutações Sintéticas Letais , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Sequência de Aminoácidos , Biomarcadores Tumorais/metabolismo , Sistemas CRISPR-Cas/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células , Histonas/metabolismo , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Complexo Repressor Polycomb 2/química , Mutações Sintéticas Letais/genética , Transcrição Gênica
18.
Cancer Res ; 77(17): 4613-4625, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28655788

RESUMO

Through an shRNA screen, we identified the protein arginine methyltransferase Prmt1 as a vulnerable intervention point in murine p53/Rb-null osteosarcomas, the human counterpart of which lacks effective therapeutic options. Depletion of Prmt1 in p53-deficient cells impaired tumor initiation and maintenance in vitro and in vivo Mechanistic studies reveal that translation-associated pathways were enriched for Prmt1 downstream targets, implicating Prmt1 in translation control. In particular, loss of Prmt1 led to a decrease in arginine methylation of the translation initiation complex, thereby disrupting its assembly and inhibiting translation. p53/Rb-null cells were sensitive to p53-induced translation stress, and analysis of human cancer cell line data from Project Achilles further revealed that Prmt1 and translation-associated pathways converged on the same functional networks. We propose that targeted therapy against Prmt1 and its associated translation-related pathways offer a mechanistic rationale for treatment of osteosarcomas and other cancers that exhibit dependencies on translation stress response. Cancer Res; 77(17); 4613-25. ©2017 AACR.


Assuntos
Neoplasias Ósseas/patologia , Osteossarcoma/patologia , Biossíntese de Proteínas , Proteína-Arginina N-Metiltransferases/fisiologia , Proteína do Retinoblastoma/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Knockout , Osteossarcoma/genética , Osteossarcoma/metabolismo , Proteômica , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Nat Genet ; 49(6): 866-875, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28436985

RESUMO

The identity of the RNA-binding proteins (RBPs) that govern cancer stem cells remains poorly characterized. The MSI2 RBP is a central regulator of translation of cancer stem cell programs. Through proteomic analysis of the MSI2-interacting RBP network and functional shRNA screening, we identified 24 genes required for in vivo leukemia. Syncrip was the most differentially required gene between normal and myeloid leukemia cells. SYNCRIP depletion increased apoptosis and differentiation while delaying leukemogenesis. Gene expression profiling of SYNCRIP-depleted cells demonstrated a loss of the MLL and HOXA9 leukemia stem cell program. SYNCRIP and MSI2 interact indirectly though shared mRNA targets. SYNCRIP maintains HOXA9 translation, and MSI2 or HOXA9 overexpression rescued the effects of SYNCRIP depletion. Altogether, our data identify SYNCRIP as a new RBP that controls the myeloid leukemia stem cell program. We propose that targeting these RBP complexes might provide a novel therapeutic strategy in leukemia.


Assuntos
Regulação Leucêmica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas/genética , Leucemia Mieloide/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Sobrevivência Celular , Feminino , Hematopoese/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Leucemia Aguda Bifenotípica/genética , Leucemia Aguda Bifenotípica/patologia , Leucemia Mieloide/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Progenitoras Mieloides/metabolismo , Células Progenitoras Mieloides/patologia , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Proc Natl Acad Sci U S A ; 114(17): E3434-E3443, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28396387

RESUMO

Oncogenic PIK3CA mutations are found in a significant fraction of human cancers, but therapeutic inhibition of PI3K has only shown limited success in clinical trials. To understand how mutant PIK3CA contributes to cancer cell proliferation, we used genome scale loss-of-function screening in a large number of genomically annotated cancer cell lines. As expected, we found that PIK3CA mutant cancer cells require PIK3CA but also require the expression of the TCA cycle enzyme 2-oxoglutarate dehydrogenase (OGDH). To understand the relationship between oncogenic PIK3CA and OGDH function, we interrogated metabolic requirements and found an increased reliance on glucose metabolism to sustain PIK3CA mutant cell proliferation. Functional metabolic studies revealed that OGDH suppression increased levels of the metabolite 2-oxoglutarate (2OG). We found that this increase in 2OG levels, either by OGDH suppression or exogenous 2OG treatment, resulted in aspartate depletion that was specifically manifested as auxotrophy within PIK3CA mutant cells. Reduced levels of aspartate deregulated the malate-aspartate shuttle, which is important for cytoplasmic NAD+ regeneration that sustains rapid glucose breakdown through glycolysis. Consequently, because PIK3CA mutant cells exhibit a profound reliance on glucose metabolism, malate-aspartate shuttle deregulation leads to a specific proliferative block due to the inability to maintain NAD+/NADH homeostasis. Together these observations define a precise metabolic vulnerability imposed by a recurrently mutated oncogene.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Complexo Cetoglutarato Desidrogenase , Mutação , Proteínas de Neoplasias , Neoplasias , Animais , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Glicólise/genética , Humanos , Complexo Cetoglutarato Desidrogenase/biossíntese , Complexo Cetoglutarato Desidrogenase/genética , Camundongos , Camundongos Nus , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...